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Comparison of Two Numerical Models on Photosynthetic Response
of Quercus mongolica Leaves to Air Pollutants
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A multiple-regression model is presented for estimating the effect of major air poliutants on net photosynthetic rate
(Pn) of Quercus mongolica leaves, of which visible injury is not shown. Photosynthetic capacity was found to be pri-
marily a function of PPFD, air temperature (T) and ambient ozone (O,) concentration. The negative direction of pho-
tosynthetic capacity response to O, concentration indicates a potential growth reduction of Q. mongolica due to
ambient O, concentration in the urban areas of Korea. The model was compared with a non-linear regression model
including the same variables. We assessed the contribution of variables to two two models of ambient O, affecting Pn
of Q. mongolica leaves. The mean Pn difference between the models with and without ambient O, in the multiple-
regression was smaller than that in the non-linear regression. The relative contributions of ambient O, to multiple-
regression and non-linear regression were 12.6% and 5.6%, respectively. The results indicate that multiple-regression
models can be applicable for qualitative or quantitative assessment of the effect of air pollutants on Pn response of
plant leaves, of which visible injury may not be shown in situ. Also, the assessment of ecophysiological effects using
numerical models will have a degree of uncertainty associated with the measuring time/period of the field data used

in the modelling, as well as the numerical structure of the models.
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Ambient O, with other photochemical oxidants
has been known to directly inflict foliar injury and
premature foss (Heck et al., 1982, 1983; Reich and
Amundson, 1984, 1985; Reich and Rossoie, 1985;

Hinrichsen, 1987; Kim and Kim, 1997). Alo, O,

exposure in combination with acid mist or log may
increase nutrient leaching from leaves or needles,
and the resulting Mg and Ca deticiencies reduce
photosynthesis and biomass production both in the
canopy and in root systems (Prinz, 1987; Cook and
Johnson, 1989; Rhyu and Kim, 1994a,b). Although
ambient O, cannot explain all the charadteristics and
the causes of recent forest decline, it has been
regarded as the primary cause in central furope,
North America and Asia (Heck et al., 1984a.b; Miller,
1989; Kim and Kim, 1997). In fact, when visible
injury of plants is not shown, it is difiicult to detect
and quantify the effects of air pollutants on plant
responsc. Thus, we have been trying to verify and
quantify the effects of O, with acid mist or {og with
numerical models using ecophysiological data as a
measure of tree response. These attempts may have
the advantage that the effects of air pollutants on
plant can be verified in situ.
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Krupa and Kickert (1987) reviewed many numerical
models between air pollutant exposure and vegeta-
tion response. Also, various modek have been devel-
oped for trees and crop species to simulate  the
change of primary production by the air pollutants
Rewch et al,, 1990; Moldau ot al,, 1991; Mohren et
al., 1992; Meldahl et al., 1992; krupa et al., 1995:
Kim and Kim, 1997). Here, we tiy to directly com-
pare twa kinds of numerical models used frequently
in the analyses of plant ecophysiological responses
aifected by air pollutants. We developed a multiple-
regression model using climatic and anthropogenic
factors affecting Pn and compared it with non-linear
regression model used by Kim and Kim (1997). First,
for developing the multiple-regression model, various
statistical methods were carried out, such as ridge
regression, and forward  stepwise selection by the
least-squares method (Meyers, 1990; SAS, 1993). To
estimate and compare the mean Pn difference in
cach model, the mean value divided by the sum of
the Pn difierence between the models with and with-
out air pollutants by the number of observations, the
bootstrap and jackknife procedures were used for the
two models, rospectively. These  procedures  have
been used to estimate the precision of various similar-
ity measures, including measires  of - population
growth rate (Brault and Caswell, 1993), diet similarity
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(Smith, 1985), community similarity (Smith et al.,
1986) and niche overlap (Manly, 1990). Recently,
they have been preferred as very useful powerful
analysis techniques.

The purposes of this paper are: 1) to verify and
quantify the effects of major air pollutants with
numerical models using ecophysiological data such as
Pn (net photosyntheti( rate), and 2) to compare the
contribution of air pollutants affecting Pn of Quercus
mongolica leaves to the two maodels, and to compare
the numerical characteristics of the two models.

METHODS

Leaf Gas Exchange and Air Pollutants

Q. mongolica trees about 50 years in age, 15 m in
height, 19 cm in mean diameter at the breast height,
and at a density of about 950 trees per ha were used
as material plants. These were growing at Mt. Namsan
Park (37°33'N, 127°00'E, 250 m above sea level), a
public natural park of Seoul, Korea (Kim and Kim,
1997; Hong and Nakagoshi, 1998).

Carbon dioxide uptake of leaves was measured
with a portable infra-red gas analyser (LCA2, ADC,
UK) connected to a leaf chamber with an integral
humidity sensor, thermistor and quantum sensor
(PLC, ADC). Air was supplied to the leaf chamber
from a stabilized collection point placed outside the
canopy and the flow rate measured with an air flow
pump and mass flow meters/controllers (ASU, ADC).
Uplake rates of CO, were calculated using the equa-
tion of Long and Hallgren (1985). Measurements
were made at monthly intervals irom June to Septem-
ber 1993 in situ. In each measurement, ten leaves,
which were perfectly expanded at the outer layer of
canopy from five individuals, were selected at random.

The hourly average concentrations of TSP (total sus-
pended particulate), SO,, NO, and O, recorded at a
the National Air Pollution M()mlonng., Station  at
neanby Hannam-dong in Seoul were used as the data
of air pollutants.

Statistical Analysis

The contribution of climate factors such as hourly
average PPFD and air temperature and air pollution
factors such as hourly average TSP SO ,, NO, and O,
concentrations to Pn of Q. mongolica leaves were
analyzed by multiple-regression analysis (Meyers,
1990).

In multiple-regression analysis, the strong collinear-
ity among the independent variables prevents ordi-
nary least squares from providing meaningful estimates
of the model parameters and in detecting multicol-
linearity the diagnosis involved several aiding proce-
dures (Mevyers, 1990): the eigenvalue (or ratio) to
assess the seriousness of a particular dependency, the
variance proportions to signify what variables are
involved in the dependency and to what extent, and
the variance inflation factors (VIFs) to aid in determin-
ing the damage to the individual coefficients. Multi-
collinearity can be measured in terms of the ratio of
the largest to the smallest eigenvalue, e.g. when the
condition number of the correlation matrix exceeds
1,000 one should be concerned about the effect of
multicollinearity. It is generally accepted that if any
VIF exceeds 10, a more suitable method should be
considered. A small eigenvalue (serious linear depen-
dency), accompanied by regressors with high variance
proportions, represents a dependency involving the
regressors, and the dependency is damaging to the
precision of estimation of the coefficients.

Ridge regression may provide better parameter esti-
mates when multicollinearity is detected in multiple-
regression models. The multiple-regression model is
modified by adding an extra parameter, k, which limits
the length of the regression coefficient vector (Hoerl
and Kennard, 1970). The analysis is based on the
change in coefficient values as a function of k (the
ridge tracet. The variables are selected from the
results of ricge regression.

We also used forward slepwise selection by the
least-squares method (SAS, 1993). The forward selec-
tion technicue begins with no variables in the model.
This calculates F statistics reflecting a variables contri-
bution to the model if it is included. These F statistics
are compared to the 5% significance level for entry
into the maodel. If no F statistic has a significance level
greater than the 5% level, forward stepwise selection
stops. Otherwise, forward stepwise selection adds the
variable that has the largest f statistic to the model.
The model selection criteria are the coefficient of
determination (R?) or Mallows' C, statistic (Mayers,
1990). R? is a measure of the models capability to fit
the present data. However, the insertion of any new
regressor into a model cannot bring about a decrease
in R%. When C, is graphed with p, the model where
C, first approa( hes p is recommended. When the
nght model is chosen, the parameter estimates are
unbiased, which is reflected in C, nearing p.

For the selected model, analysis of the residual is
carried out o detect and assess the degree of discrep-
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Table 1. Correlation coeflicients among the Prand the six predictor vaiables used s regression analysis iN =68). 15P=Total su«-
pended particulate; PPFLY =photosynthetic photon flux density; T--air temperature; Pnz:Net assimilation rate.

rsp ISPy O, Oy SO, SO, NO, InNO G PPFD IniPPID) In(Ty
5T T T S A T L L L
N0,y 086 0.122
SO, 07307 % 05687 —0.231 ~0.270~
NSO 065> O0527%44—0.212 -0).254*

N()_. 0.662°* 065370003 ~.072 0318 (4280
|I1('N(K)_,) 0.6027%  (0.647% 0093 —-0.016 D307 4140
PPFD —.015 0.103 =0.096  0.016 N.060 0.066
IntPPED: —0.010 0.062 -0.216 0123 0,095 0118

=214 -0 137
=129 -0 102

1 ~().076 0152 0194 0255 ~0.346% 03367 -0.022 0004 0.568** 05507 *
In(h -~(1.058 0.167 0198 0257 -0352% 03305 0.00% 0019 0543% 0,520 *
Pn 0.059 0119 =030 ~1.237 0159 =0.055%  —=0.035 0.057 L6933 0,684 0483174 03614+

*P<0.05: ** P<0.01: < P--0.001.

ancy between the model assumed and the data
observed.

The ndependence of residuals was checked by
Durbin-Watson test {SAS, 19931, The aim of this test is
to check whether or not the errors have first-order
autocorrelation. It the Durbin-Watson statistic (¢ is
close to 2, it is suggested that the errors do not have
first-order autocorrelation. The homogencous vari-
ance of residuals was checked by residual against pre-
dicted value plot (SAS, 1993). If the plot indicates a
random  pattern around  zero with no - detectable
trend, the homogencous variance assumption of the
errors are accepted. The normality of the errors was
checked by Shapiro-Wilk statistic: <) (Shapiro and
Wilk, 1965). The statistic (W) can determine whether
to reject the null hypothesis of normality. 1t is only
necessary to examine the probabiliny associated with
the test statistic. This probability is described pp<W for
the test. If this value is loss than the chosen level, then
the null hypothesis is rejected and we can conclude
that the data do not come from a normal distribution.
The W statistic. is the ratio of the best estimate of the
variance to the usual corrected sum ol squares esti-
mator of the variance.

For a test of the null hypothesis of the observed
value and the value predicted by the selected multi-
ple-regression (M, 2y, = 0), the test is carried ot
(SAS, 1993).

Comparison of Two Numerical Models

Kim and Kim 119971 developed a non-linear regres-
sion model predicting the ambient (), effect on the
Pn of (). mongolica leaves. Net photosynthetic rate
P, N at a given PPFD (€ and air temperature (1
can be calculated as follows:

Q. N = P -EXPUQ)} - R, (1

where P, 1 and Ry are gross photosynthetic rate
pmol m ’s Y, negative constant and leai’ respiration
rate (umol me ", respectively.

I the model with ambient O,

PO, 1O = 2 P ATEXPE 2354800 =R, (2)

where Cis ambient O, concentration (pph) and
P C o

lo estimate the contribution ol ambient O in the
maodel, their mean Pn difference (u,, umol m ’s)
was estimeted using the measured data and caleulat-
ing their Pn dilterence (1) between the values caleu-
lated i the model with ambient O, by Eq. (2) and
the model without ambient O3, by Eq. (1).

AT - P, 1 =P, T, C) (3
s A2 = {200 -PeQ, T, Coydin ()
| !

where 1 is the number of observations.

tor the multiple-regression model selected,  the
mean Pn ditference (g, pmol m s ' was estimatexd
hy the same equation as Eq. (4, calculating their Pn
difterence (21 in the selected model with ambient
0. and the model removing the variable O, from the
selected modet. The P ditierence (d2) represents a
proportion of the contribution to the multiple-regres-
sion model ot ambient O Trom the above two
numerical models, the mean P difterences between
the models with and without ambient O, were esti-
mated by the above equations and then their stan-
dard errors and contidence intenals were estimated
by the bootstrap and the jackknife methods (Mueller
1979: Efron. 1987; Potvin and Roti, 1993,
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RESULTS

In measuring data during the study period, the
highest concentrations of TSP O ,, SO,, and NO, were
41 pg/m’, 67 ppb, 19 ppb and 62 ppb, respectively.
The ranges of PPFD and T were 9~1487 pumol m %™
and 18.0~33.5°C, respectively.

Table 1 shows linear correlation coefficients among
Pn and the six predictor variables used in regression
analysis. Higher correlations were found among con-
centrations of TSP, SO, and NO, (P<0.001), regard-
less of values of logarithm or observation. Correlation
between concentrations of O, and NO, was not sig-
nificant contrary to expectation, which may be due to
time lag between their chemical responses in the
atmosphere. Temperature (T) highly correlated with
PPFD and SO,. The Pn was highly correlated with
PPFD and T (P<0.001), bul was negatively corre-
lated with O, concentrations (P<0.05).

Table 2 shows multiple regression coefficients
between the Pn and the six predictor variables. After
logarithmic transformation to ensure a linear relation-
ship, PPFD was integrated into the analysis. Logarith-
mic transformation of the other variables did not
significantly change the resulls, so these variables

were not transformed in the analysis. Coefficients of
In(PPFD), T, SO, and NO,, had positive values, but O,
and TSP had negative values. The multiple correlation
coefficient was high (0.861) (P<0.001). However,
coefficients between Pn and 1SP SO, and NO, were
not significant (P<0.05) and so were removed from
the regression model (Table 2).

The VIFs of all variables did not exceed 10, but the
smallest eigenvalue, 0.00344 with condition number
= 1728.015, reflects a dependency that is very dam-
aging to the precision of coefficient estimates of
regressors 1 and intercept and, to a smaller extent, to
the coefficients of SO, andl In(PPFD) (Table 3). Clearly,
this dependency heavily involves these four regres-
sors (Table 2). The impact of the second smallest
eigenvalue (0.01933) is marginal since the condition
number is 307.698. This dependency can be inter-
preted as one that affects In(PPFD). Consequently,
such dependency is very damaging to the precision of
coefficient estimates of T, intercept, In(PPFD) and SO ,.

Because of the multicollinearity in the multiple-
regression model as seen in Table 3, ridge regression
analysis was carried out using the measured data. The
change of estimates of regression coefficient as func-

Table 2. Multiple regression coefficients between Pn and the 30 -~ -

six predictor variables used in regression analysis (N=68). 25k~

SE, 2 VIF and R represent standard error, significance proba- T In(PPFD)

bility, variance inflation factor and multiple correlation coel- 20}

ficient, respectively: Abbreviations of the other variables are ‘E

the same as in Table 1. § 161

Variable  Coefficient SE P vif E 10 T

Intercepl -10.618 2372 0.001 0.000 4 Y R — : =

TSP -0.003 0.005 0.518 3.771 § — ~ 2

0, ~0.034 0.015  0.027 1.236 oor __Nop ]

SO, 0.116 0.093 0218 3711 osk _Tep

NO. 0.011 0.020 0.592 1.876 . . Os :

In(PPFD) 2039 0289 0001  2.307 "800 Tomz o4 " Tooe T ooe T oMo

T 0.191 0114 0300 2,659 Ridge trace k

R 0.861 - 0.001 - Figure 1. The ridge trace from ridge regression.

Table 3. Collinearity diagnostics. Abbreviations of the variables are the same as in Table 1.

. Condition Variance proportion
Number  Eigenvalue number  Intercept TSP O, S(g_, - NO, in(PPFD) T

A 5.94781 1.000 0.0002 0.0022 0.0053 0.0015 0.0039 0.0005 0.0002
2 0.54362 10.941 0.0006 0.0480 0.1931 0.0136 0.0369 0.0012 0.0006
3 0.27346 21.750 0.0024 0.0199 0.4221 0.0073 0.1032 0.0143 0.0014
4 0.15217 39.087 0.0007 0.0617 0.1554 0.1140 0.5568 0.0012 0.0012
5 0.06017 98.850 0.0000 0.7128 (1.0243 0.4335 0.2306 0.0049 0.0045
6 0.01933 307.698 0.2024 0.0027 0.1424 0.0001 0.0654 0.5329 0.0119
7 0.00344 1728.015 0.7936 0.1527 0.0574 0.4300 0.0032 0.4449 0.9802
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Table 4. Multiple: regression between Pnand the three pre-
dictor variables used in regression analysis (N-- 681, Coelli-
cients are estimatedd by the least-squares method. VI =
variance inflation tactor: K=multiple correlation coeflicent;
Abbreviations of the other variables are the same as in Table 1.

Variable Coedhicient SE P Vil
Intercopt ~B08 1851 a00T 0000
(ON )35 0.015 0024 1.229
In(PPFD: 2,189 0.247 10.001 1.646

T 0108 0091 0,234 1.680

R 1.853 -

0,001 -

tions of the ridge trace k from 0 to 0.1 is shown in Fig-
ure 1. Since the wvariables were  standardized,
coefficient amplitude could be compared directly.
Most coelficient estimates stabilized quickly ot about
k= 0.02. No matter what the k value was, the stan-
dardized coefficients of NO, and TSP kept near 0,
while the coeflicients of (), SO, T and In(PPF
were higher. In selecting model variables from this
curve (Fig. 1), Hocking (1976) proposed that vari-
ables with a coelticient near zero or varying, rapidly
with k should be eliminated. This led us to climinate
NO, and TSP and select O, SO, T and In(PPFD).

Forward stepwise selection added In(PPED), O,
and T to the model one by one, and then tinally SO
and stopped (Table 4). We kept the same variables in
forward selection as those kept atter ridge regression.

However, the coefticient between Poand SO, was
not significant (P<20.05) tlable 2) and SO, variable
showed a positive effect 1o Pr, contrary 16 expecta-
tion. Thus, SO . variable was eliminated and finally the
model ncluding InPPED), O, and T as regressors
was selected. The multiple correlation coefticient was
0.853 and signilicant (P<0.001. This model could be
compared with the numerical model of Kim and Kim
(1997) including the same variables.

Pn = 2189 in(PPFD: + O.109 T
—0.0350,- 8408 tr = 0.833, n = 68).

For the selected multiple-regression model (Table
4), analvsis of residual was carried vut to detect and
assess the degree of discrepancy between the model
assumed and the data observed (Table 4. The
Durbin-Watson test showed that the Durbin-Watson
statistic <« =1.629) was close 1o 2 and thus the resiclu-
als did not have first-order autocorrelation. A plot of
residual against predicted value indicated a random
pattern around zero with no detectable trend and
thus the homogeneous variance assumption of the
residuals was aceepted. The Shapiro-Wilk statistic (W)
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Figure 2. The relationship between the Probserved and the:
Py prediicted by the multiple-regression model £ ) and nor-
Encar regression model (@), The diagonal line represents that
predicted values are equal 1o obsernved ones,

showed that the data could not reject the null
hypothesis of normality and thus iollowed the normal
distribution.

Figure 2 compares both the P observed with the
Pn calculated rom the two prodicive models, e.g.
multiple-regression: model (Table b and non-linear
regression model (Kim and Kim, 1997). By the 1-test
on the null bvpotheses that the observed values and
the preclicted values in cach of two models were the
same, the null hypotheses were not rejected (1P<
(1,490 in the multiple-regrossion model and P-20.537
mn the non-linear regression model:.

the mean P difference () of the multiple-regres-
sion model selected above (Table 4) was compared
with those b of the non-linear regression: model
inc luding the same variables by Kim and Kim (1997),
in order to verity the effect ot ambient O, on Pn of Q.
mongolica leaves in the model. Their percent Pn
reduction and mean Pn difterences were estimated
by the equations reterred 1o in the Methods section
clable 5).

The mean P difference in the non-linear regression
model (g, = 0,319 pmol m s ) 1or the original data
was stialler than that of the multiple-regression moded
i, =2 0.806 pmol m Y The contribution of ambi-
ent O o the multiple-regression model and non-lin-
var regression maodel was 12.6%  and 5.6%.,
respectively. Meanwhile, for the estimates from small
sample size of the observed data (n=68), the boot-
strap procedure was used 1o quantify the precision
andl 1o calealate confidence intervals tor the differ-
ences between the two mean Pn values. Using 1000
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Table 5. The sample mean Pn differences (p), the mean Pn differences (u) by the bootstrap and the jackknife procedures, their
standard errors, and the confidence intervals by the accelerated hootstrap method in non-linear regression and multiple-regres-
sion models. SE represents standard error. The number of bootstrap replicates is 1,000.

Madel Sample mean The bootstrap The jackknife Confidence interval
type M. Mean p SE Mean | SE Lower limit  Upper limit
Non-linear regression 0.319 0319 0.066 0.319 0.009 0.212 0.477
Multiple regression 0.806 0.809 0074 1.806 0.009 0.665 0.954
160 —— e 700 - — e
| —_—
140 \ Skewness = 0.238 | &
o ) — 600 |
120+ ;&1;/‘ Kurtosis = 0.131 g
g I ;\;ki g 500 +
2 100 Je;g-;,}’-’;ﬁ' < Non-linear regression
3 ol peieeisolosl £ :
g' 80[ K} *:&?4 . E 400 | >
& 60- ek E 7
- ¥ {rel st sl 3 300 o |
40+ e :ﬁ e Multiple regression
20‘ ﬁgﬁ g %“ : £ 200 |
0 Lt ;‘”’F’)ﬁﬁ' Hed i bed - L. -g
0.1 02 0. 05 & 100 -
= i
140 F—— e - 0l ——— ) |
v Skewness = 0.070 | 10 20 8.0 40 5.0
120 . i . s . .
2‘ 2 Kurtosis = -0.015 I Variables multiplication factor (VMF)
> 100 L qRike ; Figure 4. Changes of mean Pn difference (%) of Q. mongol-
€ got & :}:éx , ! ica leaves as a consequence of changes of O, concentrations
"é_ - s ‘é@ | in the multiple-regression model and non-linear regression
o 60F ~:>u§§c oilpe maodel.
= hegislacteotedl o
pobslieied et oeieles ; errors were 0,009 and 0.009, respectively.
20 & x’é o ! e 3
B ﬁ! §E§ o ! § s - The percentile method used the 2.5 and 97.5 per-
OLL‘“ - sl i Alim St centiles of bootstrap distribution as the limits of a 95%
06 0.8 08 1.0

Pn difference

Figure 3. Frequency distribution of 1,000 bootstrap values
for Pn differences between the models with and without O,
in the non-linear regression model (above) and multiple-
regression model (below). Arrow represents mean of 1,000
bootstrap differences in each model.

bootstrap samples the mean differences in the non-
linear regression model and mulnple regresslon
model were 0.319 and 0.809 umol m *s*, and the
biases in each model were estimated to be 0.000 and
0.003, respectively, small in both cases. Using the
jackknife samples, the mean differences were 0.319
and 0.806 umol m™%s™, respectively, being equal to
the sample mean differences.

The standard errors of the mean Pn difference were
estimated by both procedures of bootstrap and jack-
knife procedures (Table 5). Using 1000 bootstrap
samples, the estimated standard errors for mean dif-
ferences of the non-linear regression model and the
multiple-regression model were 0.066 and 0.074,
respectively. In the jackknife samples, the standard

confidence interval, while the accelerated bootstrap
method adjusted the percentile bootstrap for bias and
skewness. The percentile bootstrap distribution of the
mean difference in the non-linear regression model
showed skewness to the right (Fig. 3). To correct for
the skewed sample distribution, the accelerated boot-
strap method for confidence interval of mean differ-
ence was used (Table 5). The accelerated confidence
intervals in 1000 bootstrap repli(ates ranged from
0.212 to 0.477 in the non-linear regression model and
from 0.665 to 0.954 in the multiple-regression model.

To simulate the effect of (), concentration on Q.
mongolica leaves in urban .mras the change of mean
Pn difference was investigated, assigning the mea-
sured data of O, concentration as the 100% value
and increasing variables multiplication factor (VMF) in
O, concentration (Fig. 4). For each model, O, con-
centrations increased from (.5 to 2.0 times.

In the non-linear regression model, the mean differ-
ence increased non-inearly as O, concentration
increased; it was higher than the reference value
when VMF was =1 and lower than the reference
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value when VMF was < 1. In the multiple-regression
model, the mean Pn difference increased lincarly as
O, concentration increased; it was lower than the ret-
erence value when VMF was - - 1.0, but higher than
the reference value when VMF was <1,

Discussion

The multiple-regression model was developed using
climatic and anthropogenic factors affecting Pnand
compared with the nonincar regression model used
by Kim and Kim (1997). In the correlation analvsis
between Pn and the four air pollutants and/or two ¢li-
matic factors, Pn was highly correlated with PPFD and
T, but was negatively correlated only with O, concen-
trations. In multiple-regression, PPID, T, SO, and
NO, variables had positive coeflicients, but those uf

O, and TSP had negative. The same In(PPFD), O,
and SO. variables in the multiple-regression mode!
were selected by torward selection and ridge regres-
sion. Photosynthetic capacity of (). mongolica trees
was primarily a function of PPFD, 1, ambient O, and
SO, concentration in Seoul, Korea.

It is suggested that a higher level of SO, concentra-
tion in winter may dircctly injure evergreen conifer
species or may have an mdirect effect through the soil
on plants, whereas a lower level of SO, concentration
in summer may not camage plants (Tomlinson 11,
1983; Ptinz and Brandt, 1985). In this study, the high-
est SO, concentration was 19 pph, which is probably
too low to cause Q. mons,oli('a leaves to (Iamag.,v
Also, the SO, variable in the  multiple-regression
model in Table 2 showed a positive cffect on Pn, not
negative. Thus, we used the model including
IN(PPFD:, O, and T as regressors, removing the vari-
able SO. (Table 4). The results are consistent with the
previous work in the same forest stand (Kim and Kim,
1995, 1997), and support the hypothesis that short-
term, low O, concentration exposures lead 10 photo-
synthesis. or 5,mwth recluction of plant (Yang et al.,
1983; Reich and Amundson 1984, 1985; Reich and
Lassoie, 1985).

The non-linear regression: model expressed as a
type of power functions in previous works of Kim and
Kim (1997) was compared with the selected multiple-
regression model. The mean Pn difference in the non-
linear regression model (p,, = 0.319 umol m s " was
smaller than that of the multiple-regression madel
M = 0.806 umol m=s jor the original data. To
assess the precision of the two mean Pn ditferences,
the bootstrap and the jackknife procedures were used
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(Liron, 1987). When using the bootstrap and jack-
knite procedures in the two madels, the biases of
mean Pn difference and  their estimated  standard
errors lor cach model were very small. This indicates
that the number of observations tor the two models
was sufficient to-estimate: mean Pn- difference and
thewr ostimated standlard errors i each model. The
perentile hootstrap distribution ot the Pn difterence
in the non-linear regression model showed skewness
to the right. The range of the bootstrap distribution of
Pn difference between the two maodels did not over-
lap. This indicates that the two maodels may be used
in qualitative o1 quantitative assessment of the effect
of air pollutant on plant response.

To simulate the effect of O, concentration on Q.
mongolica leaves in urban areas we increased O,
concentration from (L5 1o 2.0 times. In the non-lin-
ear regression model, the mean difference increased
non-linearly with an increase of O, concentration. In
the multiple-regression madel, the mean difference
increased linearly with an increase: of O, concentra-
lion as expected. The mean Po difierence in the non-
lincar regression model was 150% higher than that of
the multiple-regression model when the variable mul-
tiphcation factor (VMF) was more than 1.

The advantage of the multiple-regression model
applied in this study was that it could verify the effects
ol dir pollutants using the data of ccophysiological
experiment in situ. However, several problems should
be ensured boefore the start of an experiment. First,
the PPFD as o dependent variable in field experi-
ment is the most important limiting factor on Pn
response. It should be considered that the measure-
ments of P responses i situ are evenly made
between light compensation point and the saturated
PPED according to the relationship between light and
photosynthesis of each plant species. Second, the sta-
tistical assumptions should be considered. The collec-
tion of continuous hourly average data may cause the
problem of autocorrelation of the data. In this study,
in order to avoid such problem, measurements were
made at monthly intervals during growth period and
the data were selected at random. Third, the daily,
seasonal and annual variations and distributions of air
pollutants should be considered. Krupa and Kinkert
(1987 pointed out that in the monitoring of hourly
average ambient SO . concentrations, SO, concentra-
tions were reported to be zero during approximately
904 of the monitored period. The daily and seasonal

variations of daily 1-h maximum O, concentration
were reported (Krupa et al, 1995; Kim and Kim,
19497). Therefore, if workers are to measure Pn of
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leaves during periods of low concentrations of air pol-
lutants, they cannot detect the effect of air pollutants.
Fourth, a variation of leaf status such as leaf age, leaf
location in the canopy or leaf water stress leads to no
detection of the effects of air pollutant so that leaf sta-
tus must be monitored during the measurement
period. Thus, multiple-regression model is only appli-
cable after the various conditions are suitably consid-
ered.

In conclusion, the results indicate that a multiple-
regression model can be applicable to the qualitative
or quantitative assessment of the effect of air pollut-
ants on Pn response of plant leaves in situ. Also, the
assessment of ecological effects using two kinds of
numerical models, non-linear regression models and
multiple-regression models, will have a degree of
uncertainty associated with the measuring time of
data used in the modelling, as well as with the numer-
ical structure of the model.

Received November 30, 1998; accepted February 12, 1999.
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